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1. Introduction

1. Introduction

The problem of determining rigid body motion and surface structure from image data
has been the topic of many research papers in the area of machine vision [1-22). Many
approaches based on, tracking feature points [5,11,19,20] or contours 19], using motion
flow field [1,3,4,10,12,16,17,21,221, texture 121, or image intensity gradients [14,151 have
been proposed in the literature.

In the feature point matching schemes, information about a finite number of well-
seperated points is used to recover the motion (general 8-point 2-frame algorithms of
Longuet-Higgins [11], Tsai and Huang [20], Buxton et al. [5], and the algorithm of Tsai,
Huang and Zhu [19] for planar surfaces). These methods require identifying and matching
feature points in a sequence of images. The minimum number of points required depends
on the number of image frames. With 2 frames, in most cases, a minimum of 5 points
results in a unique solution from a set of nonlinear equations. However, using 8 points,
as in algorithms cited above, one only solves linear equations. Here, it is assumed that
the more difficult problem of establishing point correspondence has already been solved.
In general, this involves determining corners along contours using iterative searches. For
images of smooth objects, it is difficult to find good features or corners.

For the general case of smooth surfaces, Longuet-Higgins and Prazdny [i] suggested
a method that uses the optical flow and its first and second derivatives at a single point.
Later, Waxman and Ullman [21] developed this into an algorithm for recovering the struc-
ture and motion parameters from a set of nonlinear equations. Subbarao and Waxman
[17] recently found a closed form solution to the original formulation in [211 for planar
surfaces. These methods while mathematically elegant are very sensitive to errors in the
optical flow data since second order derivatives of noisy data are used.

At the expense of more computation, more robust algorithms have been suggested
using the optical flow at every image point [1,3,4].

Longuet-Higgins [12] has presented a closed form solution for planar surfaces, very
similar to ours, using the coefficients of the second order optical flow equations. However,
it is assumed that both components of the flow field have already been computed for a
minimum of 5 image points.

By representing a planar surface in the form of a closed contour, Kanatani [91 has
shown that the surface and motion parameters can be computed by measuring "diam-
eters" of the contour using line and surface integrals. Here, no point correspondence is
required.

Assuming that the planar surface has a uniform texture density, Aloimonos and Chou
[2] have presented a procedure for computing the motion and surface orientation from
texture.

In much of the research work in recovering surface structure and motion from the
optical flow field, it is assumed that a reasonable estimate of the full optical flow field
is available. In general, the computation of the local flow field exploits a constraint
equation between the local intensity changes and the two components of the optical flow.
However, this only gives the component of the flow in the direction of the intensity
gradient. To compute the full flow field, one needs additional constraints such as the
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heuristic assumption that the flow field is locally smooth [7,81. This, in many cases, leads
to optical flow fields that are not consistant with the true motion field.

In an earlier paper, we presented an iterative scheme for recovering the motion of an
observer relative to a planar surface directly from the image brightness derivatives, and
without the need to compute the local flow field [14,15]. Further, using a compact vector
notation, we showed that, at most, two interpretations are possible for planar surfaces
and derived the relationship between them. Here, we present a closed form solution to the
same problem. We first solve a linear matrix equation for the elements of a 3x3 matrix
using intensity derivatives at a minimum of 8 non-colinear points. The special structure
of this matrix allows us to compute the motion and structure parameters very easily.

2. Preliminaries

We first recall some details about perspective projection, the motion field, the brightness
change constraint equation, rigid body motion and planar surfaces. This we do using
vector notation in order to keep the resulting equations as compact as possible.

2.1. Perspective Projection

Let the center of projection be at the origin of a Cartesian coordinate system. Without
loss of generality we assume that the effective focal length is unity. The image is formed
on the plane z = 1, parallel to the zy-plane, that is, the optical axis lies along the z-axis.
Let R be a point in the scene. Its projection in the image is r, where

1

The z-component of r is clearly equal to one, that is r. i = 1.

2.2. Motion Field and Optical Flow

The motion field is the vector field induced in the image plane by the relative motion of
the observer with respect to the environment. The optical flow is the appar nt motion of
brightness patterns. Under favourable circumstances the optical flow is identical to the
motion field (moving shadows or uniform objects in motion could create descrepencies
between the motion field and the optical flow. Here, we assume that the motion flow field
and the optical flow are the same). The velocity of the image r of a point R is given by

dr d 1
dt dtR.i

For convenience, we introduce the notation rt and Rt for the time derivatives of r and

R, respectively. We then have

1t (Rt ! i)R,rt . R (Rt. z)2 "'"



2. Preliminaries 3

which can also be written in the compact form

rt ( (I x (Rt x R)),,- rt =(R . i)2

" since a x (b x c) = (c. a)b - (a - b)c. The vector rt lies in the image plane, and so
(rt . i) = 0. Further, rt = 0, if Rt 11 R, as expected.

Finally, noting that R = (R. )r, we get

rt U x (Rt x r)).

2.3. Rigid Body Motion

*i In the case of the observer moving relative to a rigid environment with translational
velocity t and rotational velocity w, we find that the motion of a point in the environment
relative to the observer is given by

Rt = -w x R - t.

Since R = (R. i)r, we can write this as

Rj = -(R. 1) w x r - t.

Substituting for Rt in the formula derived above for rt, we obtain

=t x (r x (r xw

It is important to remember that there is an inherent ambiguity here, since the same
motion field results when distance and the translational velocity are multiplied by an
arbitrary constant. This can be seen easily from the above equation since the same
image plane velocity is obtained if one multiplies both R and t by some constant.

2.4. Brightness Change Equation

The brightness of the image of a particular patch of a surface depends on many factors.
It may for example vary with the orientation of the patch. In many cases, however, it
remains at least approximately constant as the surface moves in the environment. If we
assume that the image brightness of a patch remains constant, we have

dE

or
aE dr aE@ 0--; +  -=01
-r TI at

" where aE/lr = (t9E/z, aE/ y, O)T is the image brightness gradient. It is convenient
to use the notation Er for this quantity and Et for the time derivative of the brightness.

........ bt . . . . -. °. ..
............................... :.. .......... ...... . ........
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Then we can write the brightness change equation in the simple form

Er • rt + Et = O.

Substituting for rt we get

Et - Er, x (r x (r x W - R

Now

Er.- (i x (r x t)) = (Er x ). (r x t) - ((Er x !) x r).t,

and by similar reasoning

E,. (I x (r x r x w))) = (((Er x !)xr) x r) *w,

so we have

Et- (((Er x i)xr) xr). + l__ ((Er x ) x r). t = 0.R.i(E r~~r

To make this constraint equation more compact, let us define c = Et, s = (Er x 1) x r,
and v = -s x r; then, finally,

c+v.w+ .t =0 .

This is the brightness change equation in the case of rigid body motion.

2.5. Planar Surface

A particularly impoverished scene is one consisting of a single planar surface. The equa-
tion for such a surface is

R-n=1,

where n/ In is a unit normal to the plane, and 1/ In is the perpendicular distance of the
plane from the origin. Since R = (R -1)r, we can write this as

__1
r -n-

so the constraint equation becomes

c + v -W + (r . n)(s . t) = 0.

This is the brightness change equation for a planar surface. Note again the inherent
ambiguity in the constraint equation. It is satisfied equally well by two planes with the
same orientation but at different distances provided that the translational velocities are
in the same proportions.

Z-
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.. 2.6. Essential Parameters for Planar Surfaces

The brightness change equation can be written as:

C + (r x s) w + (r. n)(s t) = 0.

Now, using the identity (r x s) w = (s x w) .r, we get:

c + (s x w) . r + (r. n)(s • t)= 0.

Let us define: ( 0 -W3 +W2

" WW3 0 -WI),
-w2 +W 0

then, (s x w) - Ws, in which case, we arrive at:
TW JS_

c rWs + rTntTs--,

and after collecting terms:
~c + rT(W +t ntT)s = 0.

Now let:
(P P2 P3'\

P= P4 PS P6] =W+ntT
(e:P P8 P /9

We will refer to Pi , i - 1,2, ..., 9 as the essential parameters (in agreement with Tsai and
Huang 120]) since these parameters contain all the information about the planar surface
orientation and motion parameters. Substituting P into the brightness change equation,
we get:

c + rTps = 0.

This is a linear constraint equation in terms of the elements of P, and can be used to
solve for these parameters. We will show how the special structure of P can be exploited
to recover the motion and structure parameters very easily.

3. Recovering Essential Parameters

The nine essential parameters satisfy the following constraint equation:

c + rTps = 0.

or in terms of p, a vector of length 9 whose i-th element is pi:

c+aTp=O,

where:

a = (rs1,rs2, rl83, r2 sr282, r283, 3Sl, r3s2, 383)T.

We can compute them using image brightness E(x, y, t), and its spatial and time deriva-
tives, Er and Et, over some region I in the image plane. Since there are only eight motion

p-
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and surface parameters to recover (There are three components of each of w, t, and n.
However, as mentioned earlier, the translational velocity and the surface normal can be
recovered up to a scale factor.), only eight of the pi's are independent. This implies that
we can arbitrarily fix one of the essential parameters, and compute the remaining eight
using eight independent points (At each point, we get one constraint and we have eight
unknowns to recover).

Let p' = (pt, p2, ... , pF, 0) denote the solution obtained by setting the last element
equal to zero. If we define:

f' = (p', p2, ..., p8), and A = (rlsl,rls2,rls 3,r2sl,r 2s2,r2s3,r3sl,r3s2)
T ,

then the above constraint equation reduces to:

iTp, + c = 0.

Using eight non-colinear points (this is necessary to guarantee that the resulting equations
are independent), we can solve the following linear matrix equation:

Ai + c = 0,

where:
A = (ki,-a2 ,...,a)T, C = (C1,C2,--.,C8).

The solution of the above equation is:

P I = -A- 1c.

Image brightness values are distorted with sensor noise and quantization error. These
inaccuracies are further accentuated by methods used for estimating the brightness gra-
dient. Thus it is not advisable to base a method on measurements at just a few points.
Instead we propose to minimize the error in the brightness constraint equation over the
whole region I in the image plane. So we choose the essential parameters that minimize:

A](iTf p + c)2 dxdy.

The solution, in this case, is given by:

f (Yf iiT dxdy) -I(Wciidx dy).

Note that, in general, the true pg is nonzero. We can show that the solution obtained
through the assumption that p. = 0, p', and the true solution (denoted by p) are related
by the equation:

p=p +p 9u, u= (1,00,0,,1,0,0,0,1)T.

The proof goes as follows. Since s = (Er x i) x r, then rTs = r ((Erx i) x r) = 0. For
any arbitrary constant 1, such that L = lI (I is the identity matrix), we have:

rTLs =0.

.-.. ....-.. ..:.- .: . .. .. . . . . . . . . . ...... ... ... .-.. .. .. .,. .... ..... ..... . ........ .........-... -..-.. .-..-.- . .. .. ..



* 4. Recovering Motion and Structure 7

If we add this to our costraint equation:

c + rT(W + ntT + L)s =0.

It is immediately apparent that any P' of the form:

SP2 P3'
P5 P= =W+ntT+L

will also satisfy our constraint equation. Therefore, the two solutions for the essential
parameters are related by:

P P'- L,

or in terms of p and p':

p=p,-lu, u (1,0,0,0,1,0, 0,0,1),

for some constant .It follows that p9 = p' - 1. Now if p' = 0, then I - -pg, and so:

p=p + p 9 u.

In term of matrices P, and P':
P P, + pI.

The procedure for determining pg, and subsequently P is presented in the appendix. For
now, we assume that P is known (note that we have, so far, shown how to compute P,
and not P).

4. Recovering Motion and Structure

We now show how to compute the parameters of the translational motion and the plane
orientation from the essential parameters. Once these are known, the rotational param-

"- eters are determined from:
W = P - ntT

* Since W is skew-symmetric, and from the definition of P:

p.= p+pT_ =(W+WT) + (tnT + ntT) = (tnT + ntT).

Consider the special case where t 11 n (n kt, for some constant k). In this case,

p*= 2kttT

Computing t from the above equation, and subsequently n is a simple practice of algebra.
Therefore, from now, we assume that t X n 0 0.

Since the translational vector and the surface normal can be recovered up to a scale
factor, we can, without loss of generality, let tTt = 1. We will present our results in
terms of the normalized n and t, that is:

' n Jt
n t -=t.

'-i- .. I
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Note that:

and therefore, we can always copmute n from-

n=IlI i,11:1=TraceP*
n = nj i, Ij =2(fi - t)

We also have to normalize P*. From now, P* denotes the normalized matrix, so that:

p* =(jiiT + iT.

In order to present the solutions for ii and t, it is necessary to express the eigenvalue
decomposition of P' in terms of these vectors. We will do so in the next lemma.

Lemma 1L: Let P* = UAUT be the eigenvalue decomposition of P* = (ifiT + A)
and let r = !TraceP*. Then:

( r- 1 0 0 '
A 0 0 0

0 0T+1

Proof: (jiii+ iiiT) X fi =i i -(i Xfi)) + ii( (x i)) = 0 0 (x i), and so (ix f)
is the eigenvector corresponding to the zero eigenvalue of PF. Since it is symmetric, P'
has 3 orthogonal eigenvectors. The other two eigenvectors are, therefore, in the plane
containing t and fi. Let u = at + /3fi and A denote an eigenvector-eigenvalue pair for
some a and #3 (to be determined). Then

(ifiT + fijT) (ai + i3ii) =A (at + /3ii),

which simplifies to

[aI.i)+ ffii) + [( )+ /(t*f)i=Ac+ A~x

Since (t - ii) = r, we have:

The solutions for A are given by:

Substituting for A into the earlier equations, we get:

.- .* ..*- . . .. * * . . . * ' . . .- . .i. . . .~ 2 *



4. Recovering Motion and Structure

Using these into the equation for u, and normalizing the results yield:

2(1+r)

Note that since Ir < 1, A1 < A2 = 0 < A3. I

We can now detrmine t and fi. Let ui denote the i-th column of U. From lemma 1:

t -ii i +iul- 2- r)' u 2(l + r)

From the expressions for the eigenvectors, it follows that:

+ i=,/2(1 + )u3 , V-=,2(1 -r)ul.

Solving these for t and fi:

__+_ ¢ - 1+T 7 _
lk 71+Tu3 - -rU 1 , = -U3+2 ' 2 2

Since the choice of the signs of the eigenvectors are arbitrary, we should repeat the above
procedure with the sign of either ul or U 3 reversed:

!u2(1 - r) -2(1 + r)

In this case, the second solution is obtained from the following equations:

- I-1-T - /1+ T- -T-,
U 3 + u u 1 , t -U3-U12 2 2 2

Note that this is the dual solution for the planar surfaces. The special case of fi
corresponds to when the matrix P* has multiple eigenvalues. Then, either:

1) r 1, for which A, = A2 = 0. Then the two solutions merge to the single one:

fi = t = ,

or:

2) r -1, so that A2 = A3 = 0. Here, the unique solution is given by:

i = -t = U1.

As mentioned earlier, we can determine n through proper scaling of fi, and solve for
the rotation parameters by substituting the solutions for n and t into the equation:

W=P-ntT.

-7
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Even though we gave a complete and compact proof of the dual solution in an earlier
paper[15], it is intriguing to confirm those results with our closed form solution. We
showed that the two solutions are related by:

n* =kt, t* = 1/kn, w* =w+nxt,

where k is arbitrarily chosen to scale the translation vector and plane normal. The two
solutions given in lemma 2 for n and t already satisfy the duality relationship given
above. It remains to show the same for the rotation parameters. We only have to show
that:

W*+n*t*T = p,

where ( 0 n1 t2 - n 2tl nlt 3 - n 3tl
W* = W + n 2 tl - nit2 0 n2t3 - n3t2 ,

n3tl - nl t3 n 3 t 2 - n2t3 0 1
or

W*=W+ntT tnT

Substituting for n*, t*, and W' into the earlier equation, and simplifying the results, we

get:
W + ntT  p.

5. Summary

In this paper, we presented a closed form solution for recovering the motion of an
observer with respect to a planar surface without having to compute the optical flow
as an intermediate step. We only need the image intensity gradients at 8 non-colinear
points, however, in general, it is better to compute these gradients in a larger portion
of the image to reduce the noise effects. We first employed a constraint equation we
developed for planar surfaces to compute 9 intermediate parameters, the elements of a
3x3 matrix. We referred to them as essential parameters. The special structure of this
matrix allows us to compute the motion and plane parameters very easily.

6. Acknowledgements
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"" .. Appendix

In the previous sections, we showed how the motion papraneters can be recovered
*- once the essential paprameters are known. However, the brightness change constraint
'" equation allowed us to determine the matrix P' (a particular solution of P with the last
": element set to zero). We showed that the two solution are related by:

P = P + pgI.
Here, we show how to determine p9, and consequently P. For simplicity, let p = 1, and

let P = UAVT denote the eigenvalue decomposition of P, where (A = diag(A1 , A2, A3 )),

then:
P' = UAVT _ 11 = UAVT - IUVT.

If L = 1I then:
P'= UAVT - ULVT = U(A - L)VT.

" Similarly, if P* = P + pT = UAUT denotes the eigenvalue decomposition of P*, then:

p, = p, + pIT = p + pT - 2L = P* - 2L = U(A- 2L) U T .

* In lemma 1, we showed that A < A2 = 0 < A3 (and when t 11 n, we get two zero
eigenvalues). Therefore, the eigenvalues of pI* can be arranged in the form:

A, - 21 < -21 < A3 - 21.

It follows that I 1 (
So in summary, we assume that pg = 0, and solve for the essential parameters (ele-

ments of P'). The eigenvalue decomposition of P* allows us to determine the unknown
* shift (p9 - A2), and then, P from:

P = - 2(P')I

2

Finally, the solution of the motion and structure parameters are determined from the
equations given earlier in terms of the trace and eigenvectors of P* (note that the eigen-
vectors of P* and P', are the same).

S,

-I

I
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